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Secondary Vorticity in Axial
Compressor Blade Rows

S. L. Dixon

University of Liverpool

A theoretical investigation of sccondary flow in compressor blade rows
is presented. Formulas for calculating secondary flows in annular cascade
blade passages are derived. The influence of the relative rotation vector
on secondary velocity perturbations, using recent developments in
shear-flow theory, is examined. A method of calculating the flow through
successive blade rows is given and a comparison is made with experi-
mental results,

The prediction of axial-flow compressor and turbine performance using
matheguatical modeling has long been a desired goal of turbomachinery
analysts. Mecthods available at present for designing compressors and
turbines are usually based on the assumption of inviscid flow. Several
attempts have been made to predict the performance of axial compressor
stages in which secondary-flow theory has been utilized (c.g., Horlock
(ref. 1) and Dixon and Horlock (ref. 2)3.

Horlock established that realistic estimates of the swirl angle distribu-
tions in the flow on and near the annulus walls may be made, provided
that the entering vorticity was known and the sccondary vorticities
traced through successive blade rows. With the flow angle distributions
known, the axial velocity profiles may then be calculated using three-
dimensional inviscid analysis. Dixon and Horlock applied a simple
secondary-flow theory to the caleulation of the flow angles and velocity
distributions through a compressor stage. Fairly close agrecment with
experimental values was obtained for the guide vanes. Comparison of
calculated and experimental values for the heavily loaded rotor was
rather poor and strongly influenced by “corner stall.”

In the present paper, recent developments in the theory of shear flow by
Hawthorne and Novak (ref. 3) are incorporated into a more accurate
three-dimensional flow model to remove some of the approximations of
references 1 and 2. It is now possible to calculate the secondary flow in an
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17 THEORETICAL PREDICTION OF FLOWS IN TURBOMACHINERY

annular cascade of low hub/tip radius ratio and with comparatively few
blades instead of using a two-dimensional approximation. In reference 1,
secondary vorticity was calculated using the approximation derived by
Squire and Winter (ref. 4) and in reference 2 an approximation to a
formula of Smith (ref. 5) was employed. In this paper, secondary vorticity
has been determined more accurately by means of Hawthorne and
Novak’s analysis (ref. 3). It is assumed that the flow is inviseid in all
caleulations and the fluid rotation is prescribed by the flow at entry to
the guide vanes.

VARIATION OF VORTICITY ACROSS A BLADE ROW

An extensive literature has accumulated on the subject of secondary
vorticity in cascades and blade rows. Review papers are available by
Lakshminarayana and Horlock (ref. 6) and by Hawthorne (ref. 7). A
discussion of the relative merits and differences between some of these
theoretical treatments of secondary flow, although of great interest, is not
possible in a short paper.

Recently, Hawthorne and Novak (ref. 3) have considered the transport
of vortex filaments in a weakly sheared flow through a plane stationary
blade cascade. In their treatment, vortex filaments were transported by a
plane primary flow which was trrotational. They obtained an expression
for the streamwise component of vorticity at exit, which is responsible
for producing secondary flow, from the distortion and stretching of the
vortex filaments by the primary flow.

A similar result is obtainable for the flow through an annular cascade
for which the primary flow is irrotational. In this analysis, the stream
surfaces of the primary flow are not necessarily at the same radius before
and after the cascade (e.g., the annulus walls may be conical). Figure
1a shows the vorticity vectors lying on the development of a stream sur-
face upstream and downstream of the cascade. For the assumed inviscid,
incompressible flow, vorticity vector i, at inlet is convected through the
blade passage to become w, at outlet. The change in orientation of the
vector is caused by blade-passage-induced distortion of the primary flow,
which can be determined approximately.

At exit, the streamwise component of vorticity is

@wng
=————uw, tan B, ()
P2 €OS B2
where
— — W, ds
D= AF—
G FW 1+ W W,
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F1ure 1b.—Axial projection of blade passage showing passage and wake vorticity.

A_F= " (Sin B1+ coS Blwd)

Wn1
The integral [ ds/W , is taken around the surface of an airfoil. It represents
the difference in the transit time of a particle traveling from the leading to
the trailing edge of the airfoil when passing along the suction surface and
when passing along the pressure surface. The integral is not readily

evaluated, but may be approximated by an expression given by Smith
(ref. b)

ds_ T
W, W

(2)
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where W, is the vector mean of the inlet and exit velocities and T is the
blade circulation, i.e.

2
r= J—vlr (r1Ve—r2Ve) = constant

Using Crocco’s equation, grad I = WX o, where I is relative stagnation
pressure/density, a useful relation between the normal components of
vorticity is obtained

Wiwn = Wawne (3)

Substituting the preceding expressions into equation (1), the outlet
streamwise vorticity is found from

Ws2

a\, Wi d . W
cos fr="" (Sin B+ cos B 2)4-#1 S o sinfr (4)
T2 Wn1 pe ) W, W,

Wn1

By a fairly trivial extension, changes in density can be included in the
analysis so that it can apply to compressible flow.
For a flow at constant radius, r;=rs=r and equation (4) reduces to

on=on P 1<Smﬁ‘—sm by W /ds> (5)

W,
cosfB.  \cosB: cospBi pceospet W,

This is essentially the result obtained by Hawthorne and Novak (ref. 3)
for a plane flow in a stationary coordinate system. The streamwise com-
ponent of vorticity at inlet w. has been included in the above analysis
from the outset. It is most important to realize that wa, which is an
axisymmetric vorticity, directly influences the magnitude of the passage
(i.c., streamwise) vorticity wse at outlet and therefore contributes to the
secondary motion of the fluid.

The effect of the angular rotation vector @ on the production of
secondary vorticity is considered in the following section.

ROTOR SECONDARY FLOW!

The caleulation of the secondary flow in a rotor raises a fundamental
point concerning the effect of rotor relative rotation on the vorticity used
to determine the secondary velocities. Several writers (refs. 8, 9, and 10)
have proposed flow models in which the angular rotation vector Q is
subtracted from the absolute vorticity entering the rotor and have then
used the resulting relative vorticity to determine the relative secondary

1 The analysis of this section was carried out in collaboration with Professor Sir
William Hawthorne.
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flow. At exit from the rotor, the angular rotation vector is then added to
the relative vorticity, which now includes the rotor secondary vorticity,
to give the absolute vorticity at entry to the following stator row. It is
shown in the following that the relative rotation vector plays no part in
the calculation of secondary vorticity and only the absolute vorticity
is relevant,

Hawthorne (ref. 11) demonstrated that in the case of a general rota-
tional steady flow of an inviscid, incompressible fluid, the velocity of a
fluid particle is represented by ‘

V= grad ¢—t grad (&)
p
in which ¢ is a potential function, ¢ is the drift time of the particle, p, is
the stagnation pressure, and p is the density. In this flow, vortex filaments
lie along the intersection of surfaces of constant ¢ and constant stagnation
pressure, the latter being also stream surfaces.
By means of an extension of this theory, it can be shown that in a
rotating system of coordinates the relative velocity of the flow is

W= grad ¢—tVI—QXr (6)

where I is relative stagnation pressure/density.

In the theory of shear flow, Hawthorne (ref. 11) used a small shear
approximation to deal with the large disturbance type of flow such as the
secondary flow in blade passages. The flow is assumed to be composed of
a primary flow, fully described by a potential function ¢, satisfying the
boundary conditions on the walls and blade surfaces, and perturbations to
take account of the rotationality of the flow. The velocities induced by
rotationality are small, by hypothesis, compared with the primary flow so
that the associated vortex filaments are convected by the primary flow.

Writing,

d=¢otd1t+dot---
t=tyttit+tot-

where ¢1/ ¢, t1/1s are of first order of smallness and ¢s/ o, ta/f are of second
order of smallness, then, using equation (6), the relative velocity is

W= (Vgo—QXr)+ (Vor—tVI) + (Vo — VI )+ + - « (7

Bracketed terms in equation (7) are in descending orders of magnitude
from the left. The primary flow relative velocity is
Wp= V¢0——QXr (8)

and the velocity of the secondary flow, which is convected by the primary
flow, is
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W, = Vep— 14,V 9)

1t should be noted that & is the drift time of the primary flow. The primary
flow has zero absolute vorticity so that, to the first order, the vorticity is

o= curl W,=VIX Vi (10)

using equation (9). Thus, from equation (9), the fundamental point is
established that the secondary velocities within a rotor should be obtained
from the absolute vorticity resolved in the relative flow direction. &, the
relative rotation vector, does not enter into the calculation, except insofar
as it appears implicitly in VI.

SECONDARY VELOCITIES IN BLADE PASSAGES

Formulas for calculating the two-dimensional solution of the secondary
flow in cascade blade passages have been given by Hawthorne (ref. 12).
More recently, the more difficult problem of secondary flow in a stationary
annular cascade was investigated by Hawthorne and Novak (ref. 3) but
the final solution was not derived. This annular cascade analysis is
summarized below and is followed by a solution which can be adapted
easily to the computation of secondary velocities.

In the case of a weakly sheared flow, the primary flow may be assumed
to lie on cylindrical surfaces of constant radius and there is, therefore, no
radial component of vorticity. At outlet from the blades, only ws, the
streamwise vorticity, contributes to the secondary flow, the effects of waz
being found from axisymmetric flow analysis. Referring to figure 2, the
velocity perturbations induced by w.2 have components v,, v4, and v, and
the vorticity components are

dv,

Wy = Wey sin = ———

dr

119 ov,
wa=wn COS =" |- (rve) — PYy

Noting that v, =#.(r) only, and using the continuity condition, div(v) =0,
a Stokes’ stream function can be defined,

1y
V==

T r o6

vg=vztan oy — (11)
or
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Freure 2.—Vorticity and velocity
f perturbations in an axial pro-
% Jjection of a blade passage.
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After substituting vs, v, and we into w,s, the following differential equation
is derived,
O 19y 1% v d

V2¢=§+; 5-}-7‘—2 % =? E (T tan ag) — W2 BEC = F(T) (12)

Using equation (11), a mean value of vs can be derived and the mean flow
angle perturbation obtained,

N cos® ay (/¥ oy

Aag,=—
o 22V, J, or

de ©(13)
where V, is the primary flow axial velocity component, which can be
replaced with small error by V. (i.e., mean V), and N the number of
blades.

A solution of equation (12) must satisfy the boundary values ¢y =0 at
r=ry, r, and also at =0, 2r/N, 4n/N, etc. The Kutta condition at the
trailing edge is then also satisfied, as ve=v. tan a; at §=0, 2r/N, ete.

Hawthorne and Novak’s equations, as given in the preceding para-
graphs, are now solved. Writing

F(ry=F(r) i -4—sin ka0

n odd

and

Y= i ¥ sin k.0 (14)

n odd

equation (12) is reduced to
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dy, ldy,. k.2 4
drt r dr 7r? ‘p"_mrF(T) (15)

where k,=nN/2. The boundary conditions at §=0, 2x/N, etc., have now
been satisfied through equation (14).

Nondimensionalizing throughout (using r, and V) and solving for the
mean flow angle perturbation Aas,, using equation (14), gives

2
Aogs= —— COS2 o Z -y (16)

n odd T

and equation (15) becomes

1 k2 4 r
yn' = yn/_—2=—— L F(r)=@®&(p) (17)
P p nmw V

where
p="/T1, Yn=Vn/ (rV2), ya' =dy./dp, etc.

The solution of equation (17) must satisfy the boundary conditions
v,=0at p=p; and p=1. Solving equation (15) by variation of parameters,
the complete solutions for y, and y,” are

i /1 [(p)kn (p>—kn]
n=-t L [ g (L) (2 o d
y (1— %) J,, ? Pr Pn e

+P / (RpH-kn dp P / (Rpl kn dp (18)
(pbnp7n) / [( ) (P >—k]
2pyn’ = - td
Py (1—pikn) J,, Ph e
1 1
_p—kn / (Rpl'i'kn dp—pk" / (Rpl—k" dp (19)
o I

For a typical blade row in which, for example, N >30 and p,<0.9, such
that pp*»<1, a slightly more compact form of these expressions can be
obtained. By combining equations (16) and (19), the average flow angle
perturbation across the blade passage may be computed as a function of
radius. Another useful result is the radial veloeity perturbation #,, at the
boundary 6=0, 2x/N, etc. From equation (14)

’0,0=Z£ E knyn (20)

P nodd

where k,y. is obtained using equation (18).
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In the third section, it was demonstrated that in a rotating coordinate
framework, the secondary velocities relate to absoluie vorticity, not
relative vorticity. Thus, the solutions may also be applied to rotor rows,
replacing a, by the rotor exit flow angle 8; where required.

AMNANT N
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The ealculation of the axial velocity distribution downstream of a blade
row really presents a difficult problem unless the flow can be reasonably
assumed to be axisymmetric. In the shear flow theory, the vorticity is
assumed to be weak and the secondary velocities are then small in com-
parison with the primary flow velocities. Thus, under these conditions it
would seem justifiable to assume that at entry to the following blade row,
the flow is steady, or nearly so, the vorticity being distributed circum-
ferentially.

Hawthorne (ref. 13) has shown for the nonuniform flow through a
cascade that, in the streamwise direction, there are three components of
vorticity downstream of the trailing edge plane. The first is the dis-
tributed passage vorticity w, already considered in the second section;
the second and third are the trailing shed vorticity and trailing filament
vorticity, both of which lie along the wake. Now, trailing shed circulation
is caused by a gradient in circulation along the blade length and it is easily
demonstrated that the contributions of both the primary and perturbation
flows are already included in the analysis.

Trailing filament circulation arises in the “wakes” from the cellular
motion induced in the blade passage by the secondary streamwise vor-
ticity. The contribution made to the net vorticity by the trailing filament
vorticity was shown by Smith (ref. 14) to be small for boundary layers
which are thin compared with the blade spacing but appreciable when the
boundary-layer thickness/blade spacing ratio is of order unity.

To show how the trailing filament modifies the distributed passage
vorticity, consider first the axial component of passage vorticity,

19 161},
(58 —w,2COSa2=;—( )——

Referring to figure 15 and applying Stokes’ theorem to the fluid element
of area (2nr/N) dr, excluding the blade wake, gives

(21)

where 7 is the averaged perturbation in tangential velocity and v,, is the
radial velocity perturbation at 6=0, 2x/N, etc. Again, applying Stokes’
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theorem to the fluid element, but this time including a blade wake, gives

1d
wza=—— (rTs) (22)

rdr
which is the axial component of the combined secondary and trailing
filament vorticities. Combining equations (21) and (22), w.4 can be found

N
W4 = ez COS 0ty Vry — (23)
xr
vy, being computed from equations (18) and (20).
Now,
dv,

ws=w,; tan ag= ——

dr
and it is deduced that

we4 = WzA tan a

if the primary flow direction is not changed by the secondary flow. That
this is so can be deduced from Crocco’s equation,

1/p grad p,=VXo

1.c., wne is of fixed magnitude and the head of the resultant vorticity vector
w4 must lie along the line AB in figure 3. A change in the axial velocity
perturbation v, must occur, consistent with the reduction of ws to wea.
This change in v, is assumed to be completed far downstream of the
trailing edge plane (i.e., as in actuator dise theory).

With the resultant axisymmetric vorticity known, the secondary flow in
the following blade row can now be determined using the components of
this vorticity resolved parallel and normal to the relative primary flow of
that row.

For computing axial velocity profiles, the flow angle of the primary flow
is added to the perturbation flow angle A, to give the flow angle in the
trailing edge plane. All variations in v, are assumed to occur downstream
of this plane.

PERFORMANCE PREDICTION OF A COMPRESSOR STAGE

A revised theoretical model for predicting the performance of an axial-
flow compressor based on inviscid secondary flow is now available. It is
assumed that the velocity profile upstream of the inlet guide vanes is
known and the primary flow (i.e., no secondary flow) efflux angles can
be found for each blade row from cascade data.
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Frcure 3.—Vorticity vectors traced through two blade rows of a compressor.

Referring to figure 3, the steps in the calculation of the flow are sum-
marized as follows.

(1) Using equation (5), the passage vorticity wse at exit from the inlet
guide vanes is determined, wa and oy being generally zero for this flow.

(2) With we known, the mean flow angle perturbation Aas(r) is
calculated using equations (16) and (19). This distribution is added to
the primary flow angle o (p), giving the total exit angle az(r) to be used
in the axisymmetric flow calculation.

(3) The axial velocity distribution downstream of the guide vanes
Va2 (r) is calculated using V.1 (r) and az(r) in an axisymmetric flow equa-
tion; e.g., equation (8) in Horlock (ref. 1).

(4) A modified axial component of the streamwise vorticity is cal-
culated using equation (23); in this calculation v,, is obtained from equa-
tions (18) and (20). The resultant vorticity wss can now be found, noting
that w.s, the normal component of vorticity, must remain constant. The
vorticity wss could also be obtained from the downstream solution for
axial velocity but this is less direct and is intrinsically less accurate, as
one step in the computation involves differentiation.

(5) Resolving w4 into components parallel (wzz) and normal (wrag)
to the relative flow at rotor entry, equation (5) is employed to determine
the absolute streamwise vorticity (wsg) at rotor exit. The streamwise
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vorticity at entry will strongly influence the magnitude and direction
Of W3R.

(6) The flow angle perturbation AB;, at rotor outlet is determined
from w,sr and added to the primary flow angle 83, to give the rotor exit
flow angle for determining the axial velocity distribution far downstream.

(7) Repeat the sequence, from step (3).

It will be noticed that at rotor (and stator) entry the streamwise
vorticity relative to the blades is, in general, nonzero. This was pointed
out by Horlock (ref. 1) who observed that the “conventional” direction
of secondary rotation may be reversed because of the streamwise vorticity
at entry. In inlet guide vanes, for which wy=0, the secondary rotation
may produce overturning of the flow at the blade ends. For rotors and
stators, secondary rotation produces underturning of the flow at the blade
ends because of the inlet streamwise vorticity. Experimental results and
theoretical calculations both show that this is a normal feature of the flow
through rotors and stators. It is worth observing that the net effect of
secondary vorticity and trailing filament vorticity is to produce a resultant
vorticity which remains close to the tangential direction. This feature
strongly influences the turning direction at the blade ends.

COMPARISON WITH EXPERIMENTAL RESULTS

Calculations based on the method summarized in the preceding section
are still rather limited in scope. So far, only the flow through a set of inlet
guide vanes has been determined but the results show a closer fit of experi-
mental data than the earlier attempt described by Dixon and Horlock
(ref. 2). The method of determining the secondary flow in reference 2
was of a more approximate nature and the theory was very much sim-
plified.

The test results relate to a low-speed experimental compressor with a
hub/tip ratio of 0.8 and with 60 inlet guide vanes having a blade outlet
angle of 60°. The spacce/chord ratio (s/I) was 0.943 at the mean radius
and the blade chord was constant (0.7 in.), so that s/l varied from 0.84
at the root to 1.05 at the tip. From this information, the primary flow
angle at outlet from the vanes was estimated, using the deviation angle
rule

s
6=0.179 K deg
where 6 is the camber angle of the vanes.
Figure 4 shows the axial velocity distribution at entry to the com-
pressor which was used in all the calculations. The exact form of the
velocity profile was not known and the equilibrium velocity profile
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F1Gure 4.—Auxial velocity distribulion at entry to inlel guide vanes.

described by Coles (ref. 15) was used. This profile gives a good match with
earlier experimental results by Horlock obtained on a similar compressor
entry. The velocity distribution V in the annulus wall boundary layers as
a fraction of the mainstream velocity Vi is

vV V., 8V,
VfKVll [ln( 1» ‘)+ In 94-24+1.(1— cos m)]

where K and II, are constants having values of 0.4 and 0.55, respectively;
Vo is a “friction velocity”’; 8, is the boundary-layer thickness; » is the
kinematic viscosity; and » is the distance from the wall as a fraction of §;.

The calculated distribution of a; based on the theory is shown in figure
5, together with the experimental values. Agreement between calculated
and measured values appears to be very good. The corresponding variation
in radial velocity perturbation along the blade wake (ie., at §=0) is
given in figure 6 as a fraction of the mean axial velocity, which indicates
the rather high velocity perturbation caused by secondary flow. The
radial velocity perturbation is of most use in determining the resultant
vorticity of the axisymmetric flow. Figure 7 shows the axial component of
the streamwise vorticity at outlet w,, together with the radial velocity
correction v,,N/xr, both in a nondimensional form. The difference be-
tween the two curves results in the net axial component of streamwise
vorticity. It is of interest to note that the radial velocity contribution to
vorticity predominates over the secondary vorticity toward the bound-
ary-layer edge.

The axial velocity distribution downstream of the guide vanes was
calculated using the flow angle distribution of figure 5 and the inlet
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Ficure 6.—Variation of radial velocily at exit from guide vanes for 6 =0.

velocity profile of figure 4. As the hub/tip ratio was high and the blade
aspect ratio (the ratio of blade height to distance between centerlines of
adjacent blade rows) was small (less than 2), the axisymmetric flow cal-
culations were based on simple radial equilibrium between blade rows.
The blade row was replaced by an actuator disc located at the midchord
position and interference effects from other blade rows were neglected.
Figure 8 shows the calculated axial velocity profile which can be compared
with an experimentally derived profile. Agreement between the curves
is very good except toward the hub where, as it turns out, the flow angle
prediction also differs from the experimental values.
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The calculation of the flow in the following rotor row using the pro-
cedure given in this paper has not yet been attempted. However, flow
calculations of the rotor have been made by means of a similar but less
advanced theory. A fairly crude approximation was used to determine the
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secondary vorticity and secondary velocities were obtained from a simple
two-dimensional model. Nevertheless, valuable conclusions can be drawn
from these results, which are presented here.

The rotor blades had the same space/chord values as the guide vanes
and comprised constant section blades (10C5/20C50 profiles) set at 50°
stagger. From experimental data available, it was noticed that at the
particular test conditions being considered the blades operated close to
the peak pressure rise. A primary flow angle at rotor exit was estimated
based on the maximum unstalled deviation of the blades. Figure 9 shows
the calculated distribution of the flow angle, 8s, at rotor exit, together
with experimental values. The results can be seen to be qualitatively
similar, the discrepancies between the two curves being due probably to
the approximate nature of the theory and the assumption of constant
boundary-layer thickness.

Figures 10 and 11 show a series of axial velocity distributions calculated
systematically for the rotor with prescribed conditions. In figure 10, both
sets of calculations, A and B, employed the previously calculated rotor exit
angles shown in figure 9. However, for curve B the measured total pres-
sure losses in the rotor were included in the axisymmetric flow calculation,
whereas for curve A they were ignored. Comparing these calculated
results with experiment, a very marked improvement in the accuracy of
curve B is evident. In figure 11, the measured rotor exit flow angle was
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Ficure 9.—Flow angle distribution at exit from rotor blades.
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used in both ealculations, ¢ and D. For the former, the relative total
pressure losses were ignored and for the latter, they were included. It is
clear from curves C and A together that having the correctly calculated
flow angle distribution is vital for accurate performance prediction in
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compressors. However, it is evident from curve D that account must be
taken also of the ““losses,” at least in diffusing blade rows.

CONCLUSIONS

A comprehensive theoretical analysis is presented for calculating the
secondary flow through the successive rows of axial-flow turbomachines,
based on a known inlet velocity distribution. The controversial relative
rotation vector is shown in the analysis to be irrelevant to the calculation
of secondary vorticity. Application of the analysis to the inlet guide vanes
of an axial-flow compressor predicts an exit flow angle distribution which
is very close to the measured distribution. Subsequent calculation of the
downstream axial velocity distribution using the predicted flow angles
gives close agreement with the measured axial velocities. Thus, it is con-
cluded that for guide vanes, at least, the exit flow is fairly accurately pre-
dicted by assuming inviscid loss-free flow with no growth in boundary-
layer thickness across the row.

The prediction of flow through the rotor, which employed a simplified,
more approximate treatment than that given in the paper, showed only a
moderate agreement with experiment. The rotor was heavily loaded and
relative total pressure losses were significant. These calculations emphasize
the importance of the accurate prediction of both outlet angle and pressure
loss distributions in the caleculation of axial velocity distributions. It
should now be possible for a more accurate assessment of rotor outlet
angles to be made with the theory given in this paper.
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DISCUSSION

W. R. HAWTHORNE (Cambridge University) : The author’s solution
of equation (12) given in equations (18) and (19), although correct, is
somewhat difficult to evaluate. It is casier to reduce equation (12) to a
rectangular coordinate system by writing

r/Th= 2mz
A= €Xp (N >
and

2my

0:
N

Then the author’s equation (12) becomes
*y ﬂ-(@) _
2Ty ) F0 =6

with boundary condition ¢y=0 at y=0 and y=1 and at z=0 and
l=(N/2r) log. (r:/ms).

Writing
© 4 .
G(2) =G(2) Y — sin nwy
1,3,5 T
and
v= Z\Izn sin nwy
1,3
we obtain
A&, 4
Ve = G(2)
dz nw

By the method of variation of parameters, we obtain

l,b,, (z) — __‘1/n27r2

sinh #nl

l
[sinh nrz / G(t) sinh nr(I—1) dt

+ sinh nr(l—2) / G(2) sinh nrt dt]

0




SECONDARY VORTICITY IN AXIAL COMPRESSOR BLADE ROWS 193

and

o __4/nm [cosh nw (1—2) / G(1) sinh nrt di
dz sinh nwl 0

1

I .- e
— cosh mrzj G(t) sinh nw(I—1) dt]

The author refers to an extension of my representation of velocity in
the steady rotational flow of an inviscid, incompressible fluid, namely
tVp,

p

V=v¢—

to a rotating coordinate system. To complete the record it is desirable to
give a derivation of the author’s equation (6), since it has not been
published elsewhere. If W is the velocity relative to a coordinate system
rotating with angular velocity Q, then Euler’s equation for steady relative
flow is

(W-V) W22 XW+@X (@Xr) =1 vp
p

where r is a position vector and p and p are pressure and density, respec-
tively. It may be transformed to

WX (VXWH2Q)=V [B'F%(W?—Q‘-’r?)]
p

where r is the radius from the rotating axis. The term
pr=p+ip(W?—@%) =pl
is better called the relative Bernoulli pressure to avoid confusion, since
stagnation pressure could be written p+3pW? The term
VXWH42Q= 0

is the absolute vorticity. Now Clebsch (ref. D-1) has shown that it is
possible to represent the absolute velocity in a three-dimensional flow as

V=V¢—1Vo

where ¢, ¢, and 7 are scalars which may be chosen arbitrarily. The relative
velocity may then be written

W=Vp—1Ve—QXr

and the absolute vorticity
w=VeXVr
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Now we choose =1, so that

Vo=VI=WXa
Hence
0=(WXw)XVr

=(W: V) o— (0 V1) W
The second term

@ Vr=VoeXVr-Vr=0
hence

W. Vr=1
or

ds

T= —
w
where the integral is taken along a streamline of the relative flow and s is
the distance along the streamline. If, at any instant, one of the surfaces
t=constant is identified, then, at a time ¢ later, the fluid particles will have
drifted a distance downstream such that

ds

t= —IZ’-

Hence, we may write
W=Vp—IVI—QXr

and
w=VIXVt

The author has adopted the approximation in which the stagnation
pressure gradients are small but the disturbance from the upstream flow
is large.

There is the possibility of some’ confusion in the use of the terms
“primary flow” and “secondary flow.” In all the methods given in the
literature on the secondary-flow approximation, the stagnation pressure
gradient, Vp,/p (or its equivalent, VI, in a rotating coordinate system)
is assumed to be small of O(e). We determine the components of vortici-
ties in the flow by considering their convection by a flow of O(1) for which
Vpo/p=0 (or VI=0) and which satisfies the boundary conditions. This
flow of O(1) has frequently been described as the primary flow. ‘

Writing the total velocity as

V = Vo+ v
where V, is the primary flow and v is O(¢)

VXV=VXV+VXv
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Now
VoX(VXV,y) =0

because the primary flow has no gradient of p,. Hence, the primary flow
must either be a potential flow, VX V,=0, or a Beltrami flow with

= VXVO=)\V0

where \ is a scalar which is constant along a streamline of the primary
flow. The only component of the vorticity wo is wo, in the direction of Vy,
such that wo./Ve=A=constant along a streamline. Beltrami flows are
found downstream of rows of twisted blades around which the circulation
varies along the span when the fluid is ideal and the flow upstream of the
blades is irrotational. For such a flow, we may define wy as the primary
vorticity and note that it may be O(1). Then VXv of O(e) is the secondary
vorticity. If the Beltrami flow is weak so that A is O(e), then we may
choose a potential flow as the primary flow and incorporate the velocities
induced by the vorticity wo, in the velocity v.

This result may be extended to flows in rotating coordinate systems by
noting that in the primary flow

Wox Wy = 0
so that
=AW,

where )\ is now constant along a streamline of the relative flow. When
A is O(e), it is possible to define a primary flow

W0= Vd)o—QXl‘

for which the absolute velocity is irrotational.

Hitherto, I have been discussing the definition of the primary flow used
in calculating the vorticity convection. Some confusion has, perhaps,
arisen because when considering the computation of the velocity com-
ponents through cascades, it has been convenient to split the flow into
two parts—namely, a flow which can be computed by axisymmetric
methods (L. H. Smith calls this the primary flow) and a flow component
which requires blade-to-blade analysis and in which the effects of the
passage vorticity are obtained from equations such as the author’s
equations (16) and (19). In thislatter calculation and in the axisymmetric
calculations, we assume that the Kutta condition is adequately satisfied,
in the latter case by using a blade element or potential flow theory.

For flows in which w,; =0 there appears to be agreement, supported by
experimental data, that the actuator disc or axisymmetric approach
combined with a passage vortex computation is satisfactory (Hawthorne
and Novak, ref. 3).
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When wa70 or in the extreme case when the approaching flow is a
Beltrami flow, some question arises as to the adequacy of the method
assumed for satisfying the Kutta condition in the axisymmetric or
actuator-dise computations. It is not obvious that the blade element
theory can adequately predict the outlet angle for such flows. Work is
proceeding on this point, which is of considerable importance in step (6)
of the sixth section of the paper. At the moment, all we can say is that
step (6) contains the best assumptions that are available.

The most rigorous attempt to satisfy the Kutta condition for the
secondary flows has been given by M. Gomi (ref. D-2).

J. H. HORLOCK (Cambridge University) : With Dr, Dixon, I have for
some years followed, and participated in, discussions between Dr. L. H.
Smith and Sir William Hawthorne on the problem of secondary flow in
stationary and rotating rows of blades. This introduction to the discussion
is an attempt to summarize the position, to draw attention to differences
in two approaches to the problem, and to pose some questions to which I
still do not know the answers. These differences and questions are illus-
trated by some simple flows, concentrating first on the secondary flows in
stators and later on the secondary flows in rotors. Much of the work
presented here is not my own, but is drawn from correspondence between
the four of us and notes of the discussions that have taken place.

A critical difference between the approaches of L. H. Smith on one
hand and of Hawthorne and Dixon on the other lies in their definitions of
secondary flow. Smith defines the secondary (passage) vorticity as the
difference between the actual streamwise vorticity leaving the blade row
(ws) and the “primary”’ vorticity that would exist downstream of the
blade row if there were an infinite number of blades (w,,). Hawthorne and
Dixon define the secondary vorticity as the actual streamwise vorticity
in the channel (w,). In my opinion, neither of these approaches is in-
correct for stationary coordinates—it is simply a question of definition.

Let us first summarize the various equations that have been derived
(table D-I) for secondary flow of an incompressible fluid, expressed in
stationary coordinates. We shall use the notation of Dixon’s figure 3 for
the flow through the stationary row, working in absolute velocities and
vorticities in the first instance, but using z instead of r (implying that
the radius of the machine is very large, and we can work in Cartesian
coordinates). Subscripts s and n mean parallel and normal to the absolute
velocity, respectively.

We shall consider the use of these equations in two flows through
stationary blade rows. In the first case there is no secondary vorticity at
entry (w,, =0, w,;0) and in the second case there is no normal vorticity
at entry (w», =0, w,,;#0; a Beltrami flow). We compare the Hawthorne
equation (D-3) with the Smith equation (D-5) in each case.
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TasLe D-1.—Equations for Secondary Flow (Stationary Coordinates)

Equation

Reference and
notes

— Ws 1
vev <V)“ Rz

[CF7)

[2va(p)] (V-9 v

—wg = —2ewn,

8T s =wgepo COS a2
dV|

(D-1)

(D-2)

ds o cos az
14
e [ ‘/ 2
w52=< p")x(wo)
p

6= (m,—w,o)z COS a2

_ Vilva dﬁ
T\ Ve T dn
dVy Tva dI‘v

ér,=-V
"dr V 2

dn
dn2

Tva=actual (primary + secondary) circulation
I'v =primary circulation
n=distance normal to axisymmetric streamline

sin @z  sin o)
X -
COS a] COS o2

(D-3)

(D-4)

(D-5)

(D-6)

Hawthorne (ref.

13)—general
equation
Squire and Winter
(ref. 4)—small

deflection

Hawthorne (ref.
13)—we =0

Hawthorne and
Novak (ref. 3)
—wy =0

L. H. Smith (ref.
5)—general

L. H. Smith (ref.
5)—special
case with

dny=dns
dVi

Way = ="

dz

The first case is as follows:

av,
Wy = —

dz

Hawthorne’s equation (D-3) may be written as

av, <V1/ v,

d
o= — _s)__ (o sin al)-i-—
dz
Smith’s equation (D-6) may be written as

vV dz dz

(a Z—l sin az> (D-3a)
Ve
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T
_% Vv E’i__i_” (D-6a)

== Vv 274

The first two terms are clearly equivalent. Smith also shows that in
the primary flow

dTly d
- dz __Ud (V91 Vﬂz)
o (0w
= —g¢g | Ssln aq 1 oy az
and since
dpol_dpa2
dz dz
dVs_V2dVs_cos ey dV,
dz Vi, dz  cosoy dz
so that
dTy ) av, . VidV,
>v_ crr Jirrt D-
iz a(sm - sin v, dz) (D-7)

which establishes the identity of the other terms in the equations.

It is important to note here that in Smith’s primary flow for this
example there is no streamwise vorticity, so that there is no econflict in
the definition of the secondary flow in this case.

Let us now examine the second case

wy, =0 w,, finite

Consider this Beltrami flow moving through a cascade of twisted flat
plates that receive the flow at zero incidence and do not deflect it at all.

We cannot use Hawthorne’s equation (D-3), which was derived for
ws, =0, but the general equation (D-1) shows that with no change in
velocity, (V-V) V=0 and

Wap = Wey

Thus, on Hawthorne’s definition, the secondary vorticity at exit is equal
to that at entry. It is from this total secondary vorticity that we may
calculate the total flow velocity perpendicular to the vorticity vector.

From Smith’s equation, since Tys=Ty=0, 3T.=0; so, on Smith’s
definition, there is no secondary flow (w,—ws)2=0. However, primary
vortieity (w,)2= (w,)1 exists, so that there is vorticity ws,= (w,,)1 along
the streamline in the total flow, as in Hawthorne’s calculation.
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This example illustrates the important difference in definition of
secondary flow.

It appears then, from these examples, that the expressions given for
secondary flow through stators are entirely consistent, provided the
difference in definition is appreciated.

We now try to make a similar comparison for a rotating blade row and
again consider a number of examples to which the various approaches
must provide a solution. Equations now available are presented in table
D-II, with W now the relative velocity.

We may at this stage note that A. G. Smith has simplified his equation

to the form
2 .
ww ww VI sin vy
—)—\=)= 2— d
(” >2 <” )1 '/1 P w? ®

220 vI
+/; ~u—/;-p—cos6ds (D-12)

where 6 is the angle between VI/p and @ and is usually nearly /2, so that
the second term may be considered second-order for the purposes of this
discussion; vy is the angle between (VI/p) XW and the direction of
curvature of the relative streamline, which is also approximately =/2;
and e is the relative deflection. Thus

€R
G)-G)-[o2s o
W/, W/ 0 p W2
But VI/p=W Xa; thus, if the absolute vorticity perpendicular to the

relative stream line is wg,, and the velocity changes little in a small
relative deflection of the flow, then

Wwey— Ww; = —2eRme (D—l4)

The present paper argues that the perturbations in the relative flow
arise as a result of the absolute vorticity &, but L. H. Smith again argues
that the vorticity that should be used is the difference between the total
absolute vorticity and the absolute vorticity in the primary flow (&—ao).
This argument may be illustrated by a statement of the various velocities
and their curl.

Velocity Curl
Absolute primary flow Vo VX Vo=a0
Disturbed total absolute flow V= Vo4 o=VXV=a+d
Disturbance flow (absolute) V—Vo=% @'
Relative primary flow Wo=Vo— QX7 VX Wo=ao—28

Disturbed total relative flow WZ' = 17:o+17’ —OxF VX W_= @o— 204’
Disturbance flow (relative) W—Wo=2v' UX(W—Wy)=d'
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TasLe D-11. Equations for Secondary Flow (Rotating Coordinales)

Equation Reference and
notes
A. G. Smith (ref.
= ow 1 vI = 2. (VI
W) —=— — WeW+—=|o.{ —
wog-g[{Fprleorgfo()] |
(D-8)

where subscript w indicates resolution along the lines of the
relative velocity, but w is still the absolute vorticity.
ww =VIXVty (D-9)| Dixon (present
paper)—pre-
sumably for
w1=0 only
(potential flow
at entry)
where, from Hawthorne’s discussion of the present paper,
dse
to W (D-10)
L. H. Smith (ref.

Tva dr)d_m o-10| 5)

(ww —wwo) = (Wmm V—V:’-*_;i;] an
where wry, is the absolute vorticity, resolved normal to the
relative streamlines at entry.

In his derivation, Smith employs the Helmholz laws to determine how the absolute
vorticity changes as the flow passes through a blade row, which may be rotating or
stationary. He defines the secondary vorticity as the difference between the actual
absolute vorticity and the absolute vorticity of the primary flow. His reason for using
the difference between two absolute vorticities to obtain flow perturbations in the
rotating coordinate system is illustrated in the paragraphs following Equation (D-14)
of this discussion.

Thus, the disturbance flow is calculated from &' =&— @, the difference
between the total absolute vorticity and the absolute vorticity in the
primary flow.

In Dixon’s example in the paper, the primary flow is potential, so that
@o = zero, and both Dixon and L. H. Smith give the same answer.

We again consider a number of examples of flows through rotors in
order to establish whether the various approaches give the same result.

We shall first consider A. G. Smith’s example of uniform flow at the
entry to a rotor.

If the entry flow is axial and uniform (V,=constant, w;=0), then

2 2 2
"(2)-2ee (M55)-(3)-0
p p 2 2
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It is then evident from A. G. Smith’s equation that no absolute vorticity
ww (resolved in the relative direction) can be developed along the stream-
line, even if the relative flow is deflected. The Hawthorne/Dixon equa-
tions imply that no absolute secondary vorticity (w) can be generated
since VI X Vty is zero, and the primary flow is potential.

Consider the rotor to be made up of helical plates which do not deflect
the flow and have no lift or circulation.

Both A. G. Smith’s equations and the Dixon/Hawthome equations
show that the absolute vorticity (ww) doesnot change along the relative
streamline in this case. ww is zero at entry and at exit. The primary flow
also has zero vorticity ww,=0and the difference wy— ww,=0.T here is no
secondary flow.

L. H. Smith’s equation shows that ww = ww, is zero since I'vy =Ty =0.

We now consider a forced vortex flow entering a rotor; the entry
tangential velocity is everywhere equal to the blade speed, but the entry
axial velocity is uniform. The entry vorticity is in the axial direction,
so that

By, x28=0
p
The relative velocity and absolute vorticity vectors are parallel—a kind
of rotating Beltrami flow. The Dixon/Hawthorne equation cannot
strictly be used in this case since the entry flow is not potential.

Consider next this flow moving through rotating flat plates, aligned in
the axial direction, operating at zero incidence with zero circulation and
zero deflection. A. G. Smith’s equations give the absolute vorticity
ww =202 as unchanged. However, the primary flow also has vorticity
wew = 2%, so the difference ww— ww, is zero, and there is no secondary flow.
(Note that 2Q is subtracted from ww here, not because it is the curl of
the blade speed but because it is the vorticity in the primary flow.)

L. H. Smith’s equation (15) also gives ww—ww, as zero although the
primary flow has leaving vorticity 29.

The discussor’s tentative conclusions are

(1) The equations of Hawthorne and L. H. Smith are consistent for
flow through stators, if account is taken of the different definitions of
secondary flow.

(2) The Dixon/Hawthorne equation (10) refers only to perturba-
tions of a primary potential flow,

(3) A. G. Smith’s equation accurately describes the change in total
absolute vorticity resolved along the relative streamline.

(4) To determine the secondary flow in rotors, either L. H. Smith’s
equation or A. G. Smith’s equation may be used, as long as the primary
vorticity is first subtracted from the absolute vorticity in the latter case.
The secondary perturbation flow is calculated from &w— aw,.
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B. LAKSHMINARAYANA (The Pennsylvania State University):
The sccondary flow approximations (namely, small shear and large
disturbance) are inadequate for application to annulus wall or hub wall
boundary layers. The Bernoulli surface rotation and viscous effects tend
to reduce the development of secondary flow. This was indicated by B.
Lakshminarayana and J. H. Horlock in reference D-3 where they ade-
quately demonstrated that Bernoulli surface rotation and boundary-layer
growth through the blade row should be taken into account for accurate
prediction of secondary velocities and outlet angles, especially near the
wall. In view of this work, it is somewhat surprising that the author was
able to predict the outlet angles accurately (fig. 5) ignoring these effects.
The radial or spanwise velocities plotted in figure 6 indicate that the
distortions of Bernoulli surfaces in the author’s inlet guide vanes are not
negligible. The author’s conclusion that the outlet angle predictions are
good is based on only two experimental points inside the annulus wall
boundary layer (fig. 5). It would be useful if the author could provide a
few more data points, especially near the wall, and indicate whether the
predictions are good in this region.

With regard to the rotor secondary flow, the components wsr and wuer
at the inlet to the rotor (fig. 3) will vary through the boundary layer due
to change in relative flow direction. This effect has been neglected in this
paper, thus leading to inaccurate estimation of the streamwise vorticity
downstream and the resulting perturbations. Inclusion of these effects is
essential if accurate prediction near the wall is sought. T have illustrated
this effect, quantitatively, for an isolated rotor with axial entry and
neglecting the contributions to the downstrecam streamwise vorticity of
the wake vortex sheets.

Using A. G. Smith’s equation (eq. D13 in the discussion by Horlock),
the streamwise vorticity in the relative flow direction can be written as

wwy .
Q2= sin 81— 2e cos B1

h

where Q is the inlet absolute vorticity for axial entry of the absolute flow.

If A8 is the change in relative flow direction at any location inside the
boundary layer and e-+Ag8 is the corresponding turning angle of the
relative flow, the following expression can be derived on the assumption
that cos AB=~=1 and sin A=A

Ww, .

g = sin B1,— 2€, €08 B1,4- AB(r) sin B1,[2e,4+2488(r) —¢]

where subscript o refers to free-stream values and ¢= cot S,. The last
term in the equation represents the error in neglecting the change in 8
through the boundary layer. AB(r) can be derived from the known
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absolute velocity distribution in the boundary layer. For example, for
¢=0.5, ¢=25° and at the location where the absolute velocity is 60
percent of the free-stream velocity, the effect of neglecting this effect
results in 20 percent error in the estimate of ww,/Q at this location. The
magnitude of this error depends on the values of ¢ and ¢; the error is
largest for low-speed, large-turning or high-speed, low-turning blade
rows. A similar correction can be incorporated in the author’s general
equation (5).

Thus the author’s poor predictions for the rotor (fig. 9) may be due to

(1) Neglect of the variation in wse and wyer through the annulus
wall boundary layer

(2) Tip clearance effect, which has a tendency to underturn the
relative flow (This effect has been neglected in this analysis.)

(3) Boundary-layer growth through the rotor

S. L. DIXON ({author): In the discussions presented by Professors
Hawthorne and Horlock, the main point at issue is the effect of the
streamwise vorticity entering a blade row on the secondary motion
generated at exit. The extreme case of a Beltrami flow passing through a
blade row poses some presently unanswerable questions on the flow angle
leaving the blades. In this paper, I have been concerned with weakly
sheared flow in which vorticity is convected by a primary potential flow.
This potential flow could convect a Beltrami flow provided that, in the
notation used by Hawthorne,

Wos

)\=W=0(e)

Horlock has considered a forced vortex flow entering a rotor with a
tangential velocity equal to the blade speed and having uniform absolute
velocity in the axial direction. For this “rotating Beltrami flow,” the
primary flow has vorticity O(1) and there is no transportation of second-
ary vorticity—at least not in the sense of the paper. The vorticity is an
tntegral part of the primary flow. We could replace this flow by a primary
potential flow convecting another flow whose vorticity is 22. However,
the theory is not valid for flows in which the vorticity is O(1) and should
not be applied to such an extreme case.

More light may be thrown on the way Beltrami flows behave by an
extension of some analysis due to Hawthorne (ref. 11). We note that for a
Beltrami flow in rotating coordinates

0=\W (D-15)

where X is a scalar. By taking the curl of both sides of equation (D-15)
and noting that div W= curl =0, we find

VW4 VAXW=—xcurl W (D-16)
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If we consider the special class of flows where A=w/W =constant, then
VA=0and

VPW = —Acurl W= —A(0—2Q) (D-17)
Using equation (D-15) in equation (D-17), we get
(V24-A2) W =20\ (D-18)

For the special case in which ©=2Q (Horlock’s “rotating Beltrami
flow”), equation (D-17) gives us

V*W=0

for which the only solution is W=constant (i.e., no secondary flow).
When 029, equation (D-18) may be solved provided sufficient bound-
ary conditions are known.

Professor Lakshminarayana has rightly mentioned that boundary-layer
growth effects should be included in the method. In addition to this, 1
would include the changes in outlet angle due to flow separation. However,
at present no reliable analytical method for predicting these changes is
known. Whenever such a method becomes available its inclusion should
significantly improve the accuracy of the predicted axial-velocity profiles
after diffusing blade rows.

It is no longer possible to obtain any further experimental data from
the original source.

The rcason why directional changes of the vorticity vector induced by
the vorticity itself have been neglected in the analysis is bound up with
the nature of the approximations made in the secondary-flow theory.
Hawthorne (ref. 3) has indicated that for small vorticity the primary flow
may be assumed to remain on eylindrical surfaces of constant radius. If
there is a distortion of thesc surfaces of O(e), the effect on the vorticity
components is O(e?) and may be neglected. The analysis given in the
paper is based on the assumption of small vorticity, so that it would
be incorrect to attempt the higher-order approximations suggested by
Professor Lakshminarayana.
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